Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records

نویسندگان

  • Srinivasan V Iyer
  • Paea LePendu
  • Rave Harpaz
  • Anna Bauer-Mehren
  • Nigam H Shah
چکیده

Drug-drug interactions (DDI) account for 30% of all adverse drug reactions, which are the fourth leading cause of death in the US. Current methods for post marketing surveillance primarily use spontaneous reporting systems for learning DDI signals and validate their signals using the structured portions of Electronic Health Records (EHRs). We demonstrate a fast, annotation-based approach, which uses standard odds ratios for identifying signals of DDIs from the textual portion of EHRs directly and which, to our knowledge, is the first effort of its kind. We developed a gold standard of 1,120 DDIs spanning 14 adverse events and 1,164 drugs. Our evaluations on this gold standard using millions of clinical notes from the Stanford Hospital confirm that identifying DDI signals from clinical text is feasible (AUROC=81.5%). We conclude that the text in EHRs contain valuable information for learning DDI signals and has enormous utility in drug surveillance and clinical decision support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Drug-Drug Interactions from the Unstructured Text of Electronic Health Records

Drug-drug interactions (DDI) account for 30% of all adverse drug reactions, which are the fourth leading cause of death in the US. Current methods for post marketing surveillance primarily use spontaneous reporting systems for learning DDI signals and validate their signals using the structured portions of Electronic Health Records (EHRs). We demonstrate a fast, annotation-based approach, which...

متن کامل

Detecting Signals of Interactions Between Warfarin and Dietary Supplements in Electronic Health Records

Drug and supplement interactions (DSIs) have drawn widespread attention due to their potential to affect therapeutic response and adverse event risk. Electronic health records provide a valuable source where the signals of DSIs can be identified and characterized. We detected signals of interactions between warfarin and seven dietary supplements, viz., alfalfa, garlic, ginger, ginkgo, ginseng, ...

متن کامل

Annotation analysis for testing drug safety signals using unstructured clinical notes

BACKGROUND The electronic surveillance for adverse drug events is largely based upon the analysis of coded data from reporting systems. Yet, the vast majority of electronic health data lies embedded within the free text of clinical notes and is not gathered into centralized repositories. With the increasing access to large volumes of electronic medical data-in particular the clinical notes-it m...

متن کامل

Bidirectional RNN for Medical Event Detection in Electronic Health Records

Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It has important applications in health informatics including pharmacovigilance and drug surveillance. The state of the art supervised machine learning models in this domain are based on Conditional Random Fi...

متن کامل

Enhancing Adverse Drug Event Detection in Electronic Health Records Using Molecular Structure Similarity: Application to Pancreatitis

BACKGROUND Adverse drug events (ADEs) detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA's Adverse Event Reporting System (AERS) and more recently, Electronic Health Records (EHRs), can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013